Biomimetic Synthesis of Dimeric Metabolite Acremine G via a Highly Regioselective and Stereoselective Diels—Alder Reaction

ORGANIC LETTERS

2009 Vol. 11, No. 14 2988–2991

Elias Arkoudis, Ioannis N. Lykakis, Charis Gryparis, and Manolis Stratakis*

Department of Chemistry, University of Crete, Voutes 71003 Iraklion, Greece stratakis@chemistry.uoc.gr

Received May 8, 2009

ABSTRACT

The dimeric metabolite acremine G was synthesized featuring a highly regioselective and stereoselective Diels—Alder reaction between a TBS-protected hydroquinone diene and a structurally related alkenyl quinone. The major endo [4 + 2] adduct slowly transforms to acremine G by the atmospheric air under the deprotection conditions (in situ generated HF).

2008, 73, 4484–4490.

Acremines A–F,¹ G,² and H–N³ (Figure 1) are metabolites isolated from the cultures of the fungus *Acremonium byssoides*. They inhibit the germination of sporangia of *Plasmopara viticola*. Some of them exhibit modest cytotoxic activity against the tumor cell line H460, while acremine A inhibits lipoxygenase. Acremine A has also been isolated⁴ from the methanolic extract of *Periploca aphylla*. Its initially misassigned structure was corrected later.⁵ Of particular synthetic interest is acremine G which biosynthetically could derive from a Diels–Alder reaction between the so far nonisolated hydroquinone diene 1 and alkenyl quinone 2 (Scheme 1),⁶ accompanied by an intermolecular oxidative coupling in the [4 + 2] adduct. Biomimetic Diels–Alder reactions and dimerizations have been proposed for a plethora

Monomer 2 which resembles acremines A and B could form 1 via dehydration/oxidation. A similar biosynthetic proposal had been postulated for the structurally related allomicrophyllone. To test this postulated [4+2] biogenetic

(6) For a recent example of employing a Diels-Alder reaction between

(7) Selected examples: (a) Nicolaou, K. C.; Snider, S. A.; Montagnon,

a quinone and a diene, as a key step towards the biomimetic synthesis of

cordiaquinones in our lab, see: Arkoudis, E.; Stratakis, M. J. Org. Chem.

T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668–1698.
(b) Stocking, E. M.; Williams, R. M. Angew. Chem., Int. Ed. 2003, 42,

3078-3115. (c) Mehta, G.; Pan, S. C. Org. Lett. 2004, 6, 3985-3988. (d)

Zhang, W.; Luo, S.; Fang, F.; Chen, Q.; Hu, H.; Jia, X.; Zhai, H. J. Am.

Chem. Soc. 2005, 127, 18–19. (e) Gagnepain, J.; Castet, F.; Quideau, S. Angew. Chem., Int. Ed. 2007, 46, 1533–1535. (f) Dong, S.; Zhu, J.; Porco, J. A., Jr. J. Am. Chem. Soc. 2008, 130, 2738–2739. (g) Layton, M. E.; Morales, C. A.; Shair, M. D. J. Am. Chem. Soc. 2002, 124, 773–775. (h)

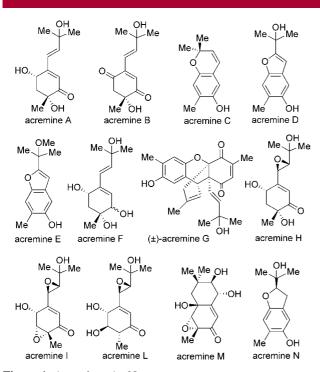
Porco, J. A., Jr.; Su, S.; Bardhan, S.; Rychnovsky, S. D. Angew. Chem.,

Int. Ed. 2006, 45, 5790-5792. (i) Vanderwal, C. D.; Vosburg, D. A.; Weiler,

S.; Sorensen, E. J. J. Am. Chem. Soc. 2003, 125, 5393-5407. (j) Nicolaou,
K. C.; Lim, Y. H.; Becker, J. Angew. Chem., Int. Ed. 2009, 48, 3444-

of natural product biosyntheses and have been accomplished aesthetically⁷ in several cases by synthetic organic chemists.

⁽¹⁾ Assante, G.; Dallavalle, S.; Malpezzi, L.; Nasini, G.; Burruano, S.; Torta, L. *Tetrahedron* **2005**, *61*, 7686–7692.


⁽²⁾ Arnone, A.; Nasini, G.; Panzeri, W.; de Pava, O. V.; Malpezzi, L. J. Nat. Prod. 2008, 71, 146-149.

⁽³⁾ Arnone, A.; Assante, G.; Bava, A.; Dallavalle, S.; Nasini, G. *Tetrahedron* **2009**, *65*, 786–791.

⁽⁴⁾ Aziz-ur, R.; Malik, A.; Riaz, N.; Nawaz, H. R.; Ahmad, H.; Nawaz, S. A.; Choudhary, M. I. J. Nat. Prod. 2004, 67, 1450–1454.

⁽⁵⁾ Hoarau, C.; Pettus, T. R. R. *Org. Lett.* **2006**, *8*, 2843–2846.

⁽⁸⁾ Yamamura, S.; Simpol, L. R.; Ozawa, K.; Ohtani, K.; Otsuka, H.; Kasai, R.; Yamasaki, K.; Padolina, W. G. *Phytochemistry* **1995**, *39*, 105–

Figure 1. Acremines A–N.

pathway, we undertook the synthesis of the proposed monomers 1 and 2. Regarding the attempted synthesis of diene 1 (Scheme 2), toluhydroquinone was used as the starting material. The TBS-protected toluhydroguinone 3 was iodinated selectively at C-5 with I₂/CF₃COOAg to form 4 in 85% yield, while the aryl iodide 4 underwent a Heck coupling (Pd(OAc)₂, (o-tolyl)₃P, Et₃N, DMF) with 2-methylbut-3-en-2-ol⁹ to afford **5** in 67% isolated yield. The allylic alcohol 5 was easily dehydrated to diene 6 on treatment with acetyl chloride/pyridine. We observed that even on standing 5 slowly dehydrates to 6. While the silyl-protected diene 6 is quite stable for a long time, all initial attempts to deprotect the TBS groups (TBAF, Pd(CH₃CN)₂Cl₂, ¹⁰ catal. TMSBr, ¹¹ LiOAc, 12 CuBr₂, 13 and other) failed to provide any hydroquinone diene. The desired diene 1 is, as expected, sensitive to acidic or basic conditions and rather polymerizes very fast leaving behind a tary residue. By using a mild desilylation procedure modified by Hudson¹⁴ (KF, HBr/CH₃COOH, dry DMF), the deprotection proceeded efficiently after 4-5 h at room temperature.

Scheme 1. Postulated Biosynthesis of Acremine G via a Tandem Diels—Alder Dimerization/Oxidation

Scheme 2. Attempted Synthesis of Diene Monomer 1

Diene 1 is extremely labile and decomposes within a few minutes. In one of our numerous attempts, luckily enough 1 was seen by 1H NMR before undergoing decomposition. It partially transforms, among other unidentified products and tar, to chromene 7, whose spectral data are in agreement with those of acremine C^1 (Figure 1). The cyclization of 1 to 7 is obviously catalyzed by acidic impurities. Hence, we decided to use the silyl-protected diene 6 en route to accomplish the [4+2] scenario shown in Scheme 1.

The synthesis of the desired dienophile 2 was accomplished in five steps (Scheme 3) from the commercially

Scheme 3. Synthesis of the Alkenyl Quinone 2

Org. Lett., Vol. 11, No. 14, 2009

available 2-methyl-1,4-dimethoxybenzene. Thus, prenylation¹⁵ at C-5 under Friedel—Crafts conditions (prenol, BF₃ etherated) afforded **8**,¹⁶ which after dihydroxylation (cat. OsO₄, NMO), protection of the 1,2-diol **9** as carbonate **10** with 1,1'-carbonyldiimidazole (CDI), and reaction of **10** with ceric ammonium nitrate, afforded quinone **11** in 52% yield over the three last steps. Finally, treatment of **11** with Hunig's base¹⁷ (15 equiv) in refluxing benzene cleanly afforded **2** in 84% isolated yield. It should be noted that regarding the last step, the reactant dilution must be kept as low as 0.01 M, otherwise a mixture of products is formed in low yield.

Having in our hands diene 6 and dienophile 2, we performed their [4+2] cycloaddition in refluxing toluene. The reaction was complete after 24 h to afford a mixture of 12 (endo product) and 13 (exo product) in 78% yield and in a relative ratio $12/13 \sim 5/1$. The structural assignment of the products was performed by NOE experiments, with some key enhancements shown in Scheme 4. The selective

Scheme 4. Diels—Alder Reaction between 6 and 2 and the Stereochemical Assignment of the Cycloadducts^a

TBSO Me OH R OH 12

^a The atom numbering of **12** and **13** was arbitrarily considered after the numbering of acremine G in the isolation paper.

formation of **12** among seven other possible regio/stereoisomers could be explained considering the *endo* transition state (Scheme 4), where a nonbonding interaction between the alkenyl chain of quinone and the aryl substituent of diene

1 possibly dictates the regiochemical and stereochemical outcome. On the other hand, the regiochemical preference for cycloaddition on the vinyl-substituted double bond of 2-monovinyl-substituted 1,4-quinones is known, ¹⁸ as a result of the larger coefficients of its LUMO (semiempirical calculations).

The endo adduct 12, which from the stereochemical point of view is the suitable precursor of acremine G, underwent deprotection (6.0 equiv of KF, 2.5 equiv of HBr 33% in CH₃COOH, dry DMF).¹⁴ These deprotection conditions (in situ generated HF) are the only effective ones, as all variations discussed above during the attempted deprotection of 6 failed, providing either a mixture of products and/or tar. After 1 h, a new product had been primarily formed (TLC), which was isolated and characterized by NMR as the selectively monodeprotected on the less hindered –OTBS group 14 (NOE interaction of H-6 with the TBS group, Scheme 5). The cis stereochemistry among the fused six-

Scheme 5. Deprotection of the Diels—Alder Adduct **12** with in Situ Generated HF, Leading to Acremine G

membered rings was retained in **14** as revealed by the NOE enhancement (4.4%) among the hydrogen atoms on C-3' and the olefinic hydrogens on the alkenyl (C7'-C8') side chain. Leaving the reaction mixture for a longer time, a new more polar product gradually appeared. After 24 h, it was isolated and ascribed as the dideprotected starting material. The completely deprotected **12** was a mixture of two epimers in a ratio \sim 5/1 with the major assigned as the trans-fused **15** (Scheme 5). In **15**, the lack of NOE enhancement between the hydrogen atom H-3' and the alkenyl (C7'-C8') side chain is characteristic, while a strong enhancement of the hydrogen atom on C-3 was observed (13.7%) upon irradiating the hydrogen atom on C-3', in agreement with our stereochemical

2990 Org. Lett., Vol. 11, No. 14, 2009

⁽⁹⁾ Harrington, P. J.; Hegedus, L. S.; McDaniel, K. F. J. Am. Chem. Soc. 1987, 109, 4335–4338.

⁽¹⁰⁾ Wilson, N. S.; Keay, B. A. Tetrahedron Lett. 1996, 37, 153–156.
(11) Shah, S. T. A.; Guiry, P. J. Org. Biomol. Chem. 2008, 6, 2168–2172.

assignment. Obviously, the cis stereochemistry among the fused rings observed in 12 or 14 was not retained in the fully deprotected cycloadduct 15 due to an epimerization under the slightly acidic reaction conditions. The minor dideprotected product 16 could not be separated from 15 by column chromatography, and we tentatively assigned its structure as the epimer of 15 on C-3'. However, in the mean time, besides monoprotected 14 and fully deprotected 15/ 16, a new product with an intermediate polarity among them started to form and became the major after 24 h, while after 36 h it was almost the only reaction product. We were pleased to realize that the newly formed product was acremine G¹⁹ (71% isolated yield from **12**). Additionally, acremine G was also exclusively formed after 24 h on leaving the mixture of 15/16 in DMF, having added acetic acid (5 equiv).

We postulate that the oxidation of 15/16 to acremine G occurs by molecular oxygen via a radical pathway (Scheme 6). A reasonable mechanism requires formation of the radical cation of the hydroquinone moiety in 15/16 by electron transfer either intramolecularly from the semiquinone moiety or intermolecularly by molecular oxygen (affording superoxide anion). The radical cation eliminates a proton, and the resulting oxygen centered radical couples with the double bond of the common enol form of 15/16. Finally, the cyclized C-centered radical reacts with the superoxide anion to form a labile hydroperoxy hemiacetal, which eliminates H₂O₂ to yield acremine G. We postulate that the slightly acidic conditions during the deprotection process facilitate the oxidative coupling through catalyzing the formation of the necessary enol. Notably, we did not observe any product resulting from the coupling among C3 and C3' that would provide a compound related to hydroxymicrophyllone.⁸ A profound reason is that a more strained system is thus generated, relative to the six-membered ring coupling which generates acremine G.

Scheme 6. Postulated Mechanism for the Oxidation of **15/16** to Acremine G by Electron Transfer to Molecular Oxygen

In conclusion, we have presented an efficient biomimetic route to acremine G featuring a highly regioselective and stereoselective Diels—Alder reaction. Synthetic studies toward microphyllones⁸ (structurally related to acremine G natural products) as well as an exploration of the hydroquinone—ketone oxidative coupling are in progress.

Acknowledgment. E.A. thanks IKY for a 4 year fellowship. We thank professor A. Berkessel (Cologne University) for obtaining some HRMS.

Supporting Information Available: Experimental details for the synthesis of monomers **2** and **6** and their cycloaddition. Copies of ¹H, ¹³C NMR, HRMS, and MS spectra of key compounds and reactions. This material is available free of charge via the Internet at http://pubs.acs.org.

OL901004E

Org. Lett., Vol. 11, No. 14, 2009

⁽¹²⁾ Wang, B.; Sun, H.-X.; Sun, Z.-H. J. J. Org. Chem. 2009, 74, 1781–1784.

⁽¹³⁾ Bhatt, S.; Nayak, S. K. Tetrahedron Lett. 2006, 47, 8395-8399.

⁽¹⁴⁾ Suleman, A. S.; Tillekeratne, L. M. V.; Hudson, R. A. Synth. Commun. 2001, 31, 3303–3308.

⁽¹⁵⁾ Misiti, D.; Moore, H. W.; Folkers, K. Biochemistry 1965, 4, 1156-

⁽¹⁶⁾ Scheepers, B. A.; Klein, R.; Davies-Coleman, M. T. *Tetrahedron Lett.* **2006**, *47*, 8243–8246.

⁽¹⁷⁾ Lindsey, C. C.; Gomez-Diaz, C.; Villalba, J. M.; Pettus, T. R. R. Tetrahedron 2002, 58, 4559–4565.

⁽¹⁸⁾ Irngartinger, H.; Stadler, B. Eur. J. Org. Chem. 1998, 605-626.

⁽¹⁹⁾ For a comparison of the NMR spectroscopic data of natural and synthetic acremine G, see the Supporting Information.